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On Measures of Ill-Conditioning 
for Nonlinear Equations* 

By Werner C. Rheinboldt 

Abstract. Let x* be a solution of the nonlinear equation Fx - b on a normed linear 

space and y* that of a perturbed equation Gx = c. Estimates for the relativized error 

between x* and y* are derived which extend a known estimate for the corresponding 

matrix case. The condition number of F depends now also on the domain, and spe- 

cial considerations are needed to determine the existence of the solution of the per- 

turbed equation. For differentiable F, when the domain shrinks to a point, the con- 

dition number of F is shown to reduce to that of the derivative at that point. 

1. Introduction. Let 
(1 .1) Ax = b 
be a linear equation in R' with nonsingular A E L(R'), and 

(1.2) Bx = c 

a perturbation of (1.1) with a matrix B E L(R') which is close to A in the sense that 

(1.3) llA-'ll 11B -All < 1. 

Then, it is well known that B is also nonsingular, and that, for b = 0, the solutions 

x* = A b, y* = B- 1 c satisfy the estimate 

(1.4) llx* -Y*ll < K(A) [IB -All + 1lb Cl 
llx*ll 1 - ic(A)IIB -All/1AIl L IA 1 l1bi l 

Here, 

(1.5) K(A) -hAIl IIA-11i 

is the condition number of A under the particular norm. 

This result has many uses in numerical linear algebra. It also points to the con- 

dition number of A as an indicator for the sensitivity of the solution of (1.1) under 

small changes of the matrix on the right-hand side. 

In Section 2 below, we show that the estimate (1.4) allows a direct generaliza- 

tion to nonlinear equations on normed linear spaces. In particular, a condition number 

for nonlinear mappings is introduced which now depends also on the domain. More- 

over, special considerations are needed to determine the existence of the solution of 

the perturbed equation in this domain. For shrinking domains the condition number 

decreases, and this suggests a study of the asymptotic behavior when the domain re- 

duces to a point. This is the topic of Section 3, where also some other related results 

are obtained. 
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2. Basic Results. Throughout the discussion, let X, Y denote real, normed linear 
spaces and L(X, Y) the space of bounded, linear operators from X into Y. For any 

mapping F: D C X > Y and closed subset C C D, we introduce the greatest lower 
bound 

(2.la) pi(F, C) = sup{t E [0, A'); IIFx - Fy11 > tjx -yll Vx, y C C} 

and the least upper bound or Lipschitz norm 

(2.1b) v(F, C) = inf {t E [O ,]; ii Fx - Fyi I< t IIxx -y Vx, y E C}. 

Note that in (2.1 b) the value t = is specifically included. 
For any finite-dimensional affine mapping Fx = Ax - b Vx C R', with non- 

singular A C L(R') and C = {x C Rn; lJxii < r}, r > 0, or C = R', we obtain v(F, C) 

= 11Ail, and P(F, C) = 1A 1A -I1, using the induced norms on L(R'). 
This example suggests the definition of the condition number 

(2.2) K(F, C 'v(F, C)lp(F, C) if O < p(F, C), v(F, C) < ?, 
0o otherwise, 

which reduces to (1.5) in our affine case. Note that always K(F, C) ) 1 and that 

K(F, C) < 00 only if p(F, C) > 0, which in turn implies the infectivity of F on C. 
The following theorem contains the above-mentioned extension of the estimate 

(1.4) to nonlinear equations 

(2.3) Fx = b, 

(2.4) Gx = c, 

with mappings F, G from X to Y which are close to each other in the sense that on 
some set C the difference mapping 

(2.5) E: CCX Y, Ex=Fx-Gx VxCEC, 

has a sufficiently small Lipschitz norm. 
THEOREM 2.1. Let F: DF CX-> Yand G: DG CX-> Ybe given and CC 

DF fn DG be a closed set on which K(F, C) < 00 and 

(2.6) v(E, C) < p(F, C). 

If solutions xt, y* C C of Eqs. (2.3), (2.4), respectively, exist, then they are unique in 
C and, with any x0 E C, x0 = x*, the estimate 

(. x* -7y* K(F, C) lb - Cii ?(E, C) ? IIEx0II1 (2.7) - _< + + 
1ix* - x01i 1 - K(F, c)v(E, C)Iv(F, C) l b - Fx0II v(F, C) lb - Fx01iJ 

holds. 
Proof For any x, y C C we have 

iiGx - Gyil > I iiFx -Fy11 - JIEx -Eyii I > [Ii(F, C) - v(E, C)]hix -yti; 
and, hence, 
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(2.8) u(G, C) > p(F, C) - v(E, C) > 0. 

This proves the infectivity of G on C and hence the uniqueness of the solutions x*, y*. 

Now observe that 

p(G, C)IIx* -y*II ? IIGx* - Gy*II < IIFx* - Gy*II + IIExO - Ex*II + IIGxO - FxOII 

I lb - ciI + v(E, C)IIx* - xI11 + IIExII, 
and 

(2.9) Ilb - FxI11 < v(F, C)IIx* - xCII. 

From these estimates it follows that 

IIx* -Y*II v(F, C) Flb - ciI v(E, C) IIExII1 
IIx* - X011 p(G, C) 11 b - Fx II v(F, C) Ilb - FxII 

while (2.8) shows that 

L(F, C) < K(F, C) 

p(G, C) 1 - K(F, C)v(E, C)/v(F, C) 

Together this proves (2.7). 
As in the matrix case, the estimate (2.7) shows that the condition number (2.2) 

of F represents an indicator for the sensitivity of a solution of Eq. (2.3) to small 

changes of F and b. In particular, let K(F, C) < oo, and suppose that by some numer- 

ical process we have obtained an approximation y* E C of the exact solution x* G C 

of (2.3). Then Theorem 2.1 applies and (2.7) reduces to the a posteriori estimate 

(2.10) IIX* -YI 
< A ?(F, C) ,1rII r = b -Fy*. 

In other words, even if the norm of the residual r is small, the relativized error between 

x* and y* may be large if F has a large condition number. 

In the case of the matrix equations (1.1), (1.2), with nonsingular A E L(R') and 

b = 0, we may take, say, C = R' and xO = 0. Then, (2.6) is exactly the condition 

(1.3) and (2.7) reduces to (1.4). However, note that in Theorem 2.1 the existence of 

the solutions x* and y* in C had to be assumed. In the matrix case, this follows imme- 

diately from the infectivity of the mappings. 
More generally, under the assumptions on F of Theorem 2.1, the restriction Fc = 

FIC of F to C has an inverse Fe 1: FC -> X with 
1 

IIF-lu - Fv- 1 II < ( 11 u - vll V u, v C FC. 
gi(F, Y7) 

Hence, if 

(2.11) EC + c C FC, 

then H: C > X, Hx = F l(Ex + c) V x E C, is well defined and satisfies 

IIHx -Hyll < v(E, C) Iax-yII Vx,yEEC 
g(F, C)lll 
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as well as HC C C. Therefore, by the contraction theorem, H has a unique fixed point 
in C which evidently is a solution of Gx = c. 

The condition (2.11) certainly holds when FC = Y. In the special case C= X, 
we then obtain the following result: 

COROLLARY 2.2. Let F: X -- Y satisfy K(F, X) < oo and FX = Y, and con- 
sider any G: X - Y such that (2.6) holds with C = X. Then, for any b, c C Y, Eqs. 
(2.3), (2.4) have unique solutions which satisfy the estimate (2.7). 

In particular, consider any linear operator A C L(X, Y) for which the inverse 
A- E L(Y, X) exists. Then, for any b E X, the affine mapping Fx = Ax - b Vx E X 
satisfies K(F, X) <0 0, and Corollary 2.2 provides the well-known extension of the esti- 
mate (1.4) to linear equations in infinite-dimensional normed linear spaces. 

As a simple example of a mapping for which the condition number is readily 
estimated, consider F: C C X X, Fx=x - Hx Vx E C, where H: C X is a 
contraction with constant ax C (0, 1). Then, we have 

IIFx - Fyll = II(x - y) - (Hx - Hy)II 
< + 

I Vx, y E C, 
? (I - cx)Ijx, yII 

and hence, K(F, C) < (1 + a)/(I - a). Thus, if x* E C is a fixed point of H and 
y* E C any approximation of x*, then, provided the choice x0 = 0 is possible, (2.10) 
takes the form 

I1X* -Y* 1 + a IHy* 
- 

11 
Ilx*11 1 - a IIHOII 

As another example, consider the two-point boundary value problem 

(2.12) -u"(t) = f(t, u(t)), < t < 1, u(0) = u(l) = 0, 

with real, continuous f and fu(t, u) > y > - iT2 on [0, 11 x R1. More specifically, let 
X be the subspace of the Sobolev space W [0, 1] consisting of all u E W [0, 1 ] with 
u(0) = u(I) = 0. Then there exists a unique mapping F: X > X such that, for any 
u e X, 

(Fu, v) = B(u, v) f1 [u'(t)v'(t) - f (t, u(t))v(t)] dt V v E X, 

where (*, *) is the inner product of W [0, 1]. The solutions of Fu = 0 are the 
(generalized) solutions of (2.12). 

The mapping F is uniformly monotone, 

(Fu - Fv, u-v)>cxju_-vIj Vu,vCEX, 

as well as Lipschitz continuous on any ball Cr = {x E X; 11x11X < r}, r > 0, 

11Fu - Fv11x < 3r,11 u - vlx Vu, v E Cr 

(see, e.g., [3]). Thus, we have K(F, Cr) < 1,r/a. 
If M C X is a subspace with basis ep1, ... C X, then the Ritz-Galerkin approx- 

imation of Fu = 0 has the form 
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FMx=AMX+HMx=O VxCEM, 

AM = (B(fp, ,p),i, j=1,..., m), HMX = (fif 6X, x/Pi(t)) sop(t)dt, i =, I *. 

Interestingly, if, say, B-splines over a partition of [0, 1] of norm h are used as basis 

functions, then under appropriate conditions it follows, [1], that 

'yih 2xTX >XTA > T VxM >> 
MX > 72XTX VX C I 71 > 72 > ?S 

while HM inherits from F the uniform monotonicity and the Lipschitz continuity on 

any ball Cr of M. Hence, we obtain K(FM, Cr) = const - h-2; that is, the conditioning 
of the approximating systems may deteriorate with increasing dimension. 

3. Some Variations of the Basic Results. Unlike in the matrix case, the quantities 
3, V, K in the estimate (2.7) depend also on the chosen set C. Evidently, we have 

(3.1) p(F, C1) >?M(F, C2), v(F, C1) < v(F, C2) if C1 C C2, 

and, hence, 

(3.2) Kc(F, C1) < Kc(F, C2) if C1 C C2. 

This suggests consideration of the asymptotic behavior of the condition number when 

C shrinks to a point. 
More generally, for any F: D C X -+ Y, closed set C C D, and point z G C, we 

introduce the localized bounds 

P,(F, C, z) = sup{t G [0, 00); jIFx - Fzji > tllx - zii Vx E C}, 
(3.3) 

v0(F, C, z) = inf{t C [0, 00]; IIFx - FzII < tIlx - zil Vx G C} 

and the corresponding localized condition number 

(3.4) K (F, C, z v?(F, C, z)lp0(F, C, z) if 0 < ,u(F, C, z), v?(F, C, z) < oo, 

(z , otherwise. 

Then the following localized version of Theorem 2.1 is valid. 
THEOREM 3.1. Suppose that, for given F: DF C X - Y, Eq. (2.3) has a solu- 

tion x* in the closed set C C D1 and that K?(F, C, x*) < oo. Let G: DG C X Y 

with C C DG, be any mapping for which the difference (2.5) satisfies 

(3.5) v0(E, C, x*) < ,go(F, C, x*). 

Then, for any solution y* C C of (2.4) and any x? C C, x? # x*, the estimate 

IIX* -Y*jj KO(F C, x*) F Ib - cll v?(E, C, x*) IlEx0 il1 
(3.6) [ +_ + 

lx -xC01 v (E C, x*) Jifb -Fxolj v?(F, C x*) lb -Fx0IIJ 
1 -K0(F, C, X*) - 

v (F, C, x*) 
holds. 

The proof is analogous to that of Theorem 2.1 and is omitted. 
The localized quantities (3.3) are closely related to the derivative of F at z, if it 

exists. 
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THEOREM 3.2. Suppose that the continuous mapping F: D C X Y has a 
(Frkchet) derivative F'(z) E L(X, Y) at z E int(D) for which the inverse F'(z)- 1 E 
L(Y, X) exists. Then for any sufficiently small e > 0 there is a 6 > 0 such that C = 

{x E X; lIx - zIl < 6} C D and 

(3.7) 1v0(F, C, z) - IIF'(z)II I < e, 1,g(F, C, z) - IIF'(z)-f11 I < e. 

Proof Let e>O, e < IIF'(z)-1Il-, be given and 6 > Osuch that CC D and 

IIFx - Fz - F'(z)(x - z)II < eIIx - zlI Vx E C. 

Then, for any x E C it follows that 

IIFx - FzII = IIF'(z)(x - z) - (Fx - Fz - F'(z)(x - z))II <> (IIF'()- l - e)IIx - zi, 

whence 

(3.8) v?(F, C, z) S IIF'(z)II + e, go(F, C, z) > IIF'(z)- 1 II - e > 0. 

Conversely, for any h E X, we have x = z + th E C for some t > 0, and thus, 

tllF'(z)hII = II(Fx - Fz) - (Fx - Fz - F'(z)(x - z))II 
< 

t(v0(F, C, z) ? e)IIhII, 
> t(g,(F, C, z) - e)IIhII. 

This shows that 

IIF'(z)II < v?(F, C, z) + e, IIF'(z)-f1 1 > p?(F, C, ) - 

which, together with (3.8), gives (3.7). 
For the basic quantities (2.1) the same result holds under the stronger assumption 

that F is continuously F-differentiable on D. The details of the result should be self- 
evident. 

From (3.7) we obtain after some computation that 

e K0(F C, Z) - K (F'(Z)) e 

JIF'(z)-1I-1 + 1 + K(F'(Z)) IIF'(z)-f1-1 - e 

where K(F'(z)) = IIF'(z)ll JIF'(z)- 1 ll is the condition number of the derivative on X. 
These results show that asymptotically near z the conditioning of the nonlinear 

mapping F and its derivative F'(z) are the same. This has various consequences. For 
example, if Newton's method is used for the solution of Eq. (2.3) then at the kth step 
the linear equation 

(3.9) F'(xk)y = FXk, k = 0, 1, 

has to be solved. If F is badly conditioned near the solution x* of (2.3) then the same 
will be true for the derivatives in (3.9) once xk comes closer to x*. In other words, 
we may expect the solution of, (3.9) to be susceptible to errors, and, as a result, the 
iteration to slow down or even fail. This is a frequently observed phenomenon. 

We end the discussion with a comment about the conditions (2.6) or (3.5) which 
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are not always easily verifiable. These conditions are only used to guarantee that the 
lower bounds v(G, C) or v0(G, C, x*) are greater than zero. Actually, we may derive 
an estimate for IIx* - y*II without these assumptions. 

THEOREM 3.3. Let F: DF C X - Y be such that K(F, C) < oo on some closed 
set C C DF and that (2.3) has a solution x* E C. Then, for any G: DG C X Y. 
C C DG, for which (2.4) has a solution y* E C, we have 

(3.10) lIX - Yl < K(F, C) llb - cl + IG -Flic 
IIX* - X011 jilb - FxoJJ jib - Fx01JJ 

Here xo E C, xo 0 x*, is any point, and JIG - Flic = sup{iiFx - Gxii 'Vx E C}. 
The proof follows directly from 

,u(F, C)Ilx* -y*ii < iiFx* - Fy*Ii < ib - cil + IiGy* - Fy*JI < lb - cil + IG - FlIc 

and (2.9). 
Clearly, the result also holds with K0(F, C, x*) in place of K(F, C). The estimate 

(3.10) is certainly weaker than (2.7) but reduces to the latter one for G = F. 
In the setting of Theorem 3.3, degree theory may be used to guarantee the exist- 

ence of the solution of the perturbed equation. We show this for the case of mappings 
on Rn; under suitable compactness assumptions on the operators, the result may also 
be extended to Banach spaces. 

THEOREM 3.4. Suppose that F: D C Rn Rn satisfies K(F, C) < oo on some 
closed, bounded set C C D with nonempty interior and that deg(F, C, b) * 0 for some 
b ? F(aC). Then, (2.3) has a solution x* E int(C) which is unique in C. Moreover, 
there is a y > 0, depending only on the norm, such that for any continuous G: DG C 

Rn Rn CCDG, with 

(3.11) JIG - Flic < 6 = yrg(F, C), r = infix - x*ii Vx E aC} 

Eq. (2.4) has a solution y* E C. For these solutions, (3.10) holds. 
Proof. By Kronecker's theorem (see, e.g., [2, p. 161]), (2.3) has a solution 

x* E int(C) which, because of g(F, C) > 0, is unique in C. Then 

IIFx - bil > ,u(F, C)llx - x*ll > a = rgu(F, C)> VNx G 3C; 

and, hence, there is a y > 0 which depends only on the norm (e.g., y = 1/7 for the 
Euclidean norm [2]) such that (3.11) implies deg(G, C, b) = deg(F, C, b). This ensures 
the existence of a (not necessarily unique) solution y* E C of (2.4); and hence, by Theo- 
rem 3.3, the validity of (3.10). 

Once again the result also holds with the localized quantities K0 and go in place 
of K and g. As a simple example involving the latter form of the theorem, consider 
the polynomials 

20 

f(t)= HJ (t-k), g(t)=f(t)-et19 VtER1, 
k=1 

on C = [19 - 71, 19 + 71] with sufficiently small r1 > 0. Then, deg(f, C, 0) = -1 and 
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IIf - glic < 3 * 1024e, if at least 7r < 0.1. Moreover, we have approximately g0(f, C, x*) 
-I f'(19)1 = 18! 6.4 x 1015. Hence, for e = 223, the localized form of (3.11) is 
violated, and indeed the computational results of Wilkinson [4] show that the roots of 
f at t = 18 and 19 turn into a pair of conjugate complex roots of g. On the other 
hand, for e = 2-55, we see that g has a solution y* E C; and the localized form of 
(3.10) with x0 = 18.9, and f(x0) 5 x 1014 gives approximately Iy*- 191 2 x 10-8, 
while the computational results in [4] show that Iy* - 191 .9 x 10-8. 
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